Williams Instrument Incorporated is proud to announce its latest addition to its existing line of pneumatic Oscillamatic® Controllers – the MK XIIA.

Maximum Corrosion Resistance, Minimum Maintenance

The MK XIIA combines the advantages of 316SS Stainless Steel construction for maximum corrosion resistance and the Diaphragm-Style design for minimal maintenance to provide for optimum performance.

FEATURES

- **Wide Supply Pressure Range**

 (30 – 100 psig)

- **Accuracy and Repeatability**

 (± 1.75% @ 30 PSI to ± 2% @ 45 SPM with clean, dry instrument air)

- **Versatility:** 1-45 SPM standard speed range with 10:1 turndown achieved in one setting

- **Low Maintenance:**

 Minimum internal moving parts
 Easy assembly and disassembly

- **Standard Materials of Construction:** 316SS (all parts exposed to Air/Gas supply)

- **Diaphragm:** Neoprene

- **Shipping Weight:** 2 lbs.

- **Dimensions:**

 Height: 4.75”
 Diameter: 2”
 Inlet & Outlet: 1/4-18 NPT

DESIGN IMPROVEMENTS

- Compact size and lightweight

- Diaphragm design for cleaner operation and reduced maintenance

- No oil or grease is needed

- Hardened 17-4 ph Stainless Steel seats

- New bolt design for easy access to diaphragms for maintenance

- Bottom plug allows for servicing of pilot plug and lower spring

- Available with 3-15 CSM port hole upon request

RECOMMENDED APPLICATIONS

- Corrosive Environments and Gases (onshore or offshore) and Sour Gas

- V and W Series Pneumatic Plunger Pumps

- LD and HD Series Pneumatic Diaphragm Pumps

- Retrofitting of any older style pump controller

CONTROLLER COMPARISON

<table>
<thead>
<tr>
<th>MODELS</th>
<th>SUPPLY PRESSURE</th>
<th>BODY MATERIAL</th>
<th>STROKES (SPM)</th>
<th>ELASTOMER OPTIONS</th>
<th>SPOOL STYLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK XIIA</td>
<td>30-100 PSI (2.0-6.9 Bar)</td>
<td>316 ss</td>
<td>1 - 45</td>
<td>Neoprene, Buna N, Viton®</td>
<td>Diaphragm</td>
</tr>
<tr>
<td>MK X</td>
<td>35-100 PSI (2.4-6.9 Bar)</td>
<td>316 ss</td>
<td>1 - 45</td>
<td>Buna/TFE, Viton®/TFE</td>
<td>U-Cup</td>
</tr>
<tr>
<td>MK VII</td>
<td>50-90 PSI (3.4-6.2 Bar)</td>
<td>Anodized Aluminum</td>
<td>1 - 45</td>
<td>Neoprene, Viton®</td>
<td>Diaphragm</td>
</tr>
<tr>
<td>MK II</td>
<td>25-65 PSI (1.7-4.5 Bar)</td>
<td>Anodized Aluminum</td>
<td>1 - 45</td>
<td>Neoprene, Viton®</td>
<td>Diaphragm</td>
</tr>
</tbody>
</table>

201 Ivyland Road • Ivyland, PA 18974 USA • (800) 235-3421 • (215) 293-0415 • Fax: (215) 293-0498 • E-mail: info@williamspumps.com
The MK XIIA Controller operates on the same operating principal as the MK X Controller. The MK XIIA has the same upper and lower chambers, but are separated with flexible diaphragms rather than sliding seals. A capillary tube, controlled by a needle valve, transfers the supply air/gas from the lower to the upper chamber.

When the spool is in the highest position, a pilot plug closes a vent and opens the supply air/gas to the pump. When the spool is in its lowest position, the pilot plug prevents the supply air/gas from entering the pump, and opens the air/gas vent to let it exhaust the pump. The spool then returns to its highest position to repeat the process.

The MK XIIA has the same upper and lower chambers, but are separated with flexible diaphragms rather than sliding seals. A capillary tube, controlled by a needle valve, transfers the supply air/gas from the lower to the upper chamber.

When the spool is in the highest position, a pilot plug closes a vent and opens the supply air/gas to the pump. When the spool is in its lowest position, the pilot plug prevents the supply air/gas from entering the pump, and opens the air/gas vent to let it exhaust the pump. The spool then returns to its highest position to repeat the process.

When the pressure in the chamber is low enough, the spool spring starts pushing the spool upward. The exhaust spring pushes the pilot plug upward, and the controller returns to its initial position.

To reassemble, push the mid diaphragm onto the top diaphragm stop. Push the lower diaphragm onto the upper seat. Thread the inner spacer onto these (2) diaphragm assemblies. With a screwdriver and 9/16" wrench, tighten securely, but not enough to pucker the diaphragms. Install the mid ring, counter bore first, onto the diaphragm assembly past the lower diaphragm and then the mid diaphragm. Some maneuvering of the diaphragms will be needed. Install the outer sleeve by sliding past the lower diaphragm. Insure the narrow seat on the sleeve goes against the mid diaphragm and the wider seat is against the lower diaphragm. Some maneuvering of the lower diaphragm will also be needed. The inner assembly is now complete.

To reinstall the inner assembly into the lower controller body. Make sure all the capillary holes in the upper diaphragm, the mid ring and the mid diaphragm are in line with the capillary hole of the lower body. Use a small awl or hex wrench to thread together. Install (1) of the (4) body screws from the under side through the loose parts and through the top of the diaphragm. Now remove the awl and place on top of the assembly the upper control body. Insure the capillary hole is in-line with the others. Loosely thread together the (1) body screw. Install remaining (3) screws and torque all to 28-32 inch pounds.